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AFIT/GA/ENY/89D-6

Abstract

The time of flight of a two-body orbit may be determined by integrating the radial

velocity equation for a conic section. The resulting expression is sometimes called Lam-

bert's Time Function, which depends on the gravitational constant, two position vectors,

and the semi-major axis of the conic flight path. For mission planning purposes, it is often3 desirable to know the semi-major axis as a function of time, rather than the reverse. Nor-

mally, a root finding technique such as Newton-Raphson is employed to find the value of a3 characteristic orbital parameter which matches a given time of flight. Alternatively, Lam-

bert's Time 'unction may be expanded as a power series involving the inverse semi-major3 axis. The expression for semi-major axis is then determined through series reversion and

inversion of the resulting series. A simplified method of obtaining the series coefficients is

3 given, as well as a numerical study of convergence properties. >1
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5 SERIES REVERSION/INVERSION OF

LAMBERT'S TIME FUNCTION

I
3 I. Introduction

The two-position, time of flight problem in orbital mechanics has historically been

the subject of many investigations. Although a closed form solution is available through

integration of the polar velocity equation for a conic section, the resulting expression is

transcendental in the orbital parameters, making it difficult to solve for them. In order to

match the orbital parameters to a particular flight time, root finding techniques are nor-

mally used. Many different formulations of the problem have been developed to minimize

the convergence time of these root finding methods, as well as to generalize the problem

to avoid case dependent equations. In each of these methods, an initial value is required.

Depending on the method used, convergence may not be achieved at all if the initial value

is too different from the correct value. In the classical Gauss method (4: p. 188-197 ),

for example, the algorithm fails to converge for transfer angles larger than roughly 70'.

Although other methods have been developed to converge for larger angles, they may be

deficient for small angles. It would be desirable, therefore, to develop a solution that

does not require an initial value and is not dependent on transfer angle for convergence

* properties.

The method presented is a solution of the closed form time of flight equation for

semi-major axis as a function of time. It will be shown that this function may be used to

directly calculate the semi-major axis of an orbit without the utilization of a root finding

3technique.

U
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II. Analytical Development

The Two-Body Time of Flight Problem

3 The two-body time of flight problem may be stated as follows: Given two position

vectors from the gravitational body to the orbiting body and :' time of flight between the3 positions, deteimine the semi-major axis of the conic trajectory followed by the body.

I
r 2I

I Figure 1. Geometry of two-body problem

3 In the problem statement above it is assumed that the Newtonian gravitational con-

stant is known, and both bodies behave as point masses.

I2
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Lambert's Time Function

3 The purpose of this section is to derive Lambert's Time Function in a closed, tran-

scendental form. Once known, it can then be expressed as a power series allowing for later

* reversion and inversion to solve for semi-major axis.

If the position of the orbiting body is expressed in polar coordinates, the energy

3 integral may be written:

*r (~ 2 (2 1)(1

3 where r is the radial distance between the two bodies, 1u is the gravitational constant,

a is the semi-major axis of the conic section, and t is the time. Equation (1) may be

5 rearranged as follows:

I r dr (2)
=V2 r - (r2/a)

The integral takes the form (3: p. 70-75 ):

t= - V2r-(/ (3)

where s = (rl + r 2 + c)/2, and c = chord. ( see figure 1.)

The integration may be simplified by introducing a change of variable:I
r = a(1 - cos4) (4)

I To find the new limits of integration:

Sris - - a(l -cos) (5)

= cos - (I ) (6)

* 3I
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sin ( -/2) / / s-, (Cos_(1 - 's )(7)

= sin -I..- (8)

Similarly, the upper limit of integration becomes:

I bF = sin-1 sa= (9)

Letting a and 0 be the lower and upper limits, respectively, the integral becomes:

t i a(1 - cos O)asindq (10)
- 4 2a(1 - cos ) - a(1 - cos0)2 (

which simplifies to:

t = 6(1- cos )dO (11)

I Performing the quadrature yields:

a3t = -[(Ra - sin a) - (3 - sin 0)] (12)

This is Lambert's Time Function for an elliptic trajectory with a transfer angle less than 7r,

and a flight time less than the minimum energy transfer time. A minimum energy transfer

is an elliptical transfer where the semi-major axis is equal to one half of the semi-perimeter,

a = s/2.

IU
I
I
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Series Representation of Time of Flight

3 In order to accomplish series reversion and inversion, the time of flight must first be

expressed as a single power series. Substitution of the definitions of a and 3 yields:I
St[2 sin - sin (2 sin-

s - a - cr
(2 sin -  2aT - sin (2 sin-'

I

3jL = (2 sin-i si7 2 3 7Cos (sin-1 F _)

2 sin- =- - 2 s - Ccos (sin-' - 'I 2a - 2a V2a

2sinI PLka ia F 2a

- 2.i-i /=C -2 1!- (13)3 2a V 2a rl-2ac)]

The Hypergeometric Series definitions for sin-' x and v/ITW-x are:

3sin-F' x=XF Q, ; ; X2)

31 --.T2 = F (2 1, b; b; x2)

Substituting into equation (13) produces:

2Ia - 1~F! ;;-~ -

a a
2aa 2 2
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U
- C - -1 1 3 s-c\/-1

(s~~c) ( - -; ; F 9 -- F b; bC;14
2j~2a 2 2 2 2a k2 '2a ,

The hypergeometric functions may be expressed as infinite series, allowing manipula-

3 tion of individual terms to form a single, combined series. Representing the hypergeometric

functions with Pochhammer notation yields:

2j--oa (2 ), , 22,,

I
= O n ( (1/4))] n! -

(S-C) 3  n 1 - I (15)

The first terms in both series of equation (15) are zero. Changing the indicies by m = n- 1,

n = m + 1 produces:

I t = F_____ +___

=V [( . .+ ((m + 1)21 1/4) (m+ 1)! 2 -

V (- M=) m+1 ((M +1)2 - 1/4) (m + 1)! 2a

*2 3 0 M2 m ]L ( ) --

,oL(4/ 3)(m + 1)2 - 1/3 (i)! 2a

I 2 ( 3c) 2 [ cM

2 , (4/3)(r + I)'2 - 1/3 ( m)-! (16)

I6I
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In order to produce the hypergeometric parameters (1: p. 276-277), one must form

the ratio ""4' where urn is the Mn h term of the infinite series. This gives the hypergeometric

parameters (1, 2, 1) by inspection:

I (Um~~i/U ) [(in + 1/2)(M + 3/2)]m 1()17(U+/U)m + 5/2) M+1 2a (17)

Substitution into equation (16) yields:

I
;( 2 \ 2 V (a (1,3;5; (S-c)t= - -F -;-; F2 -F 2- -;

3 2p 2'22 2a 3 2u 222 a

I 30 ( _ _ _

2 s /-, (sc)32)

2 Fs300 ( /s cn+3/2\ n1(

3 S

I (,() (18)

The first term may be recognized as the Parabolic Transfer Time, t, ,for the given

problem geometry. ( see figure 1 ) The Parabolic Transfer Time is the flight time for an
object traveling on a parabolic trajectory between two position vectors, where the origin

of the position vectors is the focus of the parabola. The flight time of an object traveling

on a hyperbolic trajectory will be less than the Parabolic Transfer Time, and the flight
I time on an elliptic trajectory will be greater. The semi-major axis of a parabola is infinite

by definition, and is the limiting case between hyperbolas and ellipses. Let the quantity1 (.L - 1) = T, a non-dimensional time parameter.

I
I7
I
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* T _~~0 (8..c)fl+3/2) ( ) n )"(9
T t ( -c)3/2) O n(n l

The gravitational constant p is included only in the non-dimensional time parameter T.

Therefore, the series coefficients are functions of geometric constants.

It may be shown that the time equation for the hyperbolic case differs only in the

sign of the argument, i. e., (=-), and the series coefficients are identical.

I
I
I
I
I
I

I
I
I
I
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Reversion/Inversion of Series

The purpose of this section is to solve equation (19) for the semi-major axis, a. To

this end, a series reversion will be accomplished followed by a binomial expansion of its

inverse. In general, equation (19) may be expressed as follows:

AlT=A1s ) +a As) +A3 (a S " (20)
2a2 2a)(0

In a series reversion, the expression is rewritten (2: p. 316-317):

2a ( AI T + AT 2 + A T 3 + " (21)

In order to determine the semi-major axis, the inverse must be found:

I( -1) (A 'T-+-A(T' + A+T + .

I 00

1)(A'I T) ' -,-n) 3
n=O

=(A'T) 1 - (AT) (A2T2 + A3T 3 +...)
S 3 ... (22)+(AIT)- (A2T + A'T 3  (22).

I Or more generally:

I (2) = BT-' + B2 T° + B 3 T' + B 4 T 2 +... (23)

I by equating powers of T.

I9
I
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Determination of Series Coefficients

Now that the semi-major axis has been expressed as a power series in T, a method

must be developed to determine the unknown coefficients Bi in terms of the known coeffi-

cients Ai. Equation (23) is repeated here for convenience:

a()= BiT- + B 2T° + B 3T' + B4T2 +... (24)

Multiply by (-) T and substitute for T:

IA, (-j) + A2 ( 2 + A3 (_L)3 2a ... 2a =_)2 _) (25)
B, (L) + B2(-L){A, (-L) + A2() + A3() +..}+a.

I Taking a derivative with respect to (-) yields:

A 1 + 2A 2 (-) + 3A 3 (a) 2 + ... =

B1 + B 2 {A (-)+ A2 () 2 + A3 () 3 +...} (26)

+B 2 (){A + 2A 2 (-) + 3A3 (t) 2 +...}+...

Evaluate at ( 0) = 0:
Al = B1 

(27)

I In an analogous fashion, successive derivatives evaluated at zero produce the follow-

i ing:

A 2 = AIB 2  (28)

A 3 = A 2 B 2 + AB 3  (29)

I The expressions become increasingly complex with each derivative.

In general, a matrix equation may be formed showing the relationships between Ai

I

I
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and Bi:

A2  A1  0 0 0 0 B2

A3  A2  A2 0 0 0 B3

A 4  - A 3 2A1A 2 A, 0 0 B4  =Q-1A (30)

.0

SA, A, A B,

Solving for the Bi:

B 2  Al"1  0 0 0 0 A 2

B3 -A2/A3 A -2  0 0 0 A3

B4  = (2A2 - AlA3 )/A' -2A2 /A4 A 3 0 0 A4  = QX (31)

.0
B, .. 0 .' ABi A,-' Ai

To summarize:

B, = Al (32)

B 2 = A2/A1 (33)

B3 = (A1A3 - A2)/A3 (34)

B 4 = (A 2A 4 - 3A1A2A3 + 2A3)/A5 (35)

It may be seen that the elements of the matrix in equation (31) follow a pattern. This

I allows the matrix to be formed without the necessity of taking numerous derivatives as was

shown previously. As an aid to finding this pattern, the computer program MACSYMA, a

I trademark of Symbolics, Inc. (Project MAC's SYmbolic MAnipulation System) was used

to generate numerous terms for inspection. The infinite series were represented by tenth

order polynomials and then expanded by MACSYMA, which also evaluated ten derivatives

in the manner of equation (26). This produced ten relationships between the Ai and the

Bi which were arranged in matrix form. Finally, MACSYMA was used to symbolically

invert a subset of the matrix allowing for the pattern to be recognized through inspection,

trial and error. It should be emphasized that a symbolic manipulation program such as

I 1

I
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MACSYMA may prove to be an invaluable tool in this type of analysis.

I To form the matrix in equation (31), element q1I is assumed to be Al "1. From this,

all remaining elements may be formed. The process is illustrated by example:

ITo form element q33, take the following dot product:

I q33 - {q21, qll} @ {q12, q22} (36)

- {-A 2I/A,, A,-} {O, Al2}- Al 3  (37)

To form element q32, take the following dot product:

q32 = {q21,qll}9{qll,q21} (38)

I _ {-A 2/A3,AI1} e {AI1,-A 2/AI} = -2A 2/A 4  (39)

ITo form element q31:

q31 {032, q33, 0q3 4 ,-..} {A 2 , A 3 , A4 ,...} (40)

m {-2A2/A4 + A3/A } = (2A2 - AIA 3 )/A'l (41)

All of the elements of the third row are now determined, and the fourth row may be

found beginning with q44 and ending with q41. The first element of each new row must

be calculated last, since all of the remaining row elements are required. To generalize the

procedures, the following steps should be performed:

m 1. q1= A-'

m 2. qij = (q(i-l,1), q(j-2,1), ... qll) a (q(1,j-1), q(2,j-1), ... q(i-ljj-l)), 2 < j <=i

3. qjl = (-AI "1) {(qi2,qi3, ... qi,i) e (-Ar1 )(A 2, A3,...Ai)}

4. Bi =(qi, qi2 . qij) e (A2? A31 ... , Aj+j)

m 12
I
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Repeat steps 2, 3, and 4 for each additional term desired. ( see Appendix C, "Form

Q Matrix" ) Because the Ai are known from equation (19) they may be numerically

determined beforehand and used to calculate the Bi coefficients.

In the figure below, r =r2 = k = 1, and 0 = 180. Recall T =0 corresponds to a

parabolic transfer.I
SEMi-MAJCR AXIS VS. Tr! = : = k = 1 , tht a 19! 0

4 0 ........ ... .... ........ .... ........ .... .. ..... ..... ... ... .... ....... ........ ... .... ... ... ... .. .... ... .. .... ........ ..... .... ..... ... .... ... .. ... .. .... .....

U. .. ..............................I

. . .

Figure 2. Semi-major axis vs. T for general 1800 case.

I
* 13
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III. Numerical Investigation and ResultsI
General Case

The general case considered was composed of the following orbital geometry:

a magnitudes of position vectors: rl = r 2 =1

e gravitational constant: p. = 1

a range of transfer angle: 00 < 8 < 3600, 150 increme~its

* range of flight time: 0 < t < te

The following data consists of values of semi-major axis calculated for each 150 of

3 transfer angle using partial sums of the series. Values are tabulated for terms i = 1, 2, 3

and i = 21,22, 23. The last column is the value of T obtained by using the first 23 terms

3 to find the semi-major axis, then by employing Lambert's Time Function. These values of

T may be used as an accuracy check against the desired value of T shown in the caption

of each table. Taking an example row of data, for T = -0.9 and 0 = 300, the semi-major

axis value using one term in the series is -0.28090, for two terms is -0.10653, and for terms

3 21, 22, and 23 remains a constant -0.00504. At this point the semi-major axis seems to

have converged to the correct value, since application of Lambert's Time Function yields

T = -0.9 as the last entry in the data row.

The accuracy of the series is plotted against T and i in Appendix B for transfer

angles of 900, 180 , 2700, and 3600. The vertical axis represents the number of significant

figures in the semi-major axis value. The four plots have a very similar appearance, which

would seem to indicate a general insensitivity of accuracy with respect to the transfer

angle. Plots were constructed for every 10', but because of the similarities, only four plots

are presented.

II

I



Table 1. Values of semi-major axis for the general case, T = -0.9I
0 1 2 3 21 22 23 T

15.0 -0.27857 0.09962 0.03942 ... -0.00504 -0.00504 -0.00504 -0.9000

30.0 -0.28090 0.10653 0.03527 ... -0.00502 -0.00502 -0.00502 -0.9000

45.0 -0.28468 0.11718 0.02979 ... -0.00499 -0.00499 -0.00499 -0.9000

60.0 -0.28972 0.13043 0.02450 ... -0.00494 -0.00494 -0.00494 -0.9000

75.0 -0.29578 0.14494 0.02058 ... -0.00489 -0.00489 -0.00489 -0.90003 90.0 -0.30255 0.15939 0.01853 ... -0.00483 -0.00483 -0.00483 -0.9000

105.0 -0.30966 0.17263 0.01819 ... -0.00476 -0.00476 -0.00476 -0.9000

120.0 -0.31667 0.18380 0.01894 ... -0.00470 -0.00470 -0.00469 -0.9000

135.0 -0.32309 0.19239 0.02007 ... -0.00464 -0.00464 -0.00464 -0.8999

150.0 -0.32839 0.19822 0.02102 ... -0.00458 -0.00458 -0.00458 -0.9001

165.0 -0.33200 0.20142 0.02155 ... -0.00456 -0.00456 -0.00456 -0.9000

180.0 -0.33333 0.20238 0.02168 ... -0.00456 -0.00456 -0.00456 -0.9000

195.0 -0.33181 0.20161 0.02163 ... -0.0v', -0.00452 -0.00453 -0.9000

210.0 -0.32692 0.19965 0.0210 ... -0.00439 -0.00439 -0.00439 -0.9000

225.0 -0.31824 0.19693 0.02161 ... -0.00415 -0.00415 -0.00415 -0.9002

240.0 -0.30556 0.19363 0.02130 ... -0.00303 -0.00391 -0.00391 -0.8997

255.0 -0.28894 0.18952 0.01986 ... -0.00356 -0.00354 -0.00354 -0.9005

270.0 -0.26888 0.18382 0.01617 ... -0.00335 -0.00335 -0.00332 -0.8995

285.0 -0.24640 0.17528 0.00944 ... -0.00287 -0.00301 -0.00311 -0.8982

300.0 -0.22310 0.16254 0.00059 ... -0.00249 -0.00261 -0.00288 -0.8977

315.0 -0.20114 0.14513 -0.00620 ... -0.00221 -0.00250 -0.00283 -0.8948
330.0 -0.18296 0.12509 -0.00486 ... -0.00233 -0.00260 -0.00232 -0.9017

345.0 -0.17090 0.10804 0.00470 ... -0.00233 -0.00229 -0.00233 -0.8995

360.0 -0.16667 0.10119 0.01084 ... -0.00228 -0.00228 -0.00228 -0.9000

1
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Table 2. Values of semi-major axis for the general case, T = -0.4

1 0 1 2 3 21 22 23 T

15.0 -0.62678 -0.24859 -0.27535 ... -0.28128 -0.28128 -0.28128 -0.4000

30.0 -0.63203 -0.24460 -0.27627 ... -0.28140 -0.28140 -0.28140 -0.4000

45.0 -0.64053 -0.23867 -0.27751 ... -0.28167 -0.28167 -0.28167 -0.4000

60.0 -0.65187 -0.23172 -0.27880 ... -0.28217 -0.28217 -0.28217 -0.4000

75.0 -0.66550 -0.22479 -0.28006 ... -0.28303 -0.28303 -0.28303 -0.4000

90.0 -0.68074 -0.21880 -0.28140 ... -0.28437 -0.28437 -0.28437 -0.4000

105.0 -0.69673 -0.21444 -0.28308 ... -0.28629 -0.28629 -0.28629 -0.4000

120.0 -0.71250 -0.21203 -0.28530 ... -0.28883 -0.28883 -0.28883 -0.4000

135.0 -0.72695 -0.21147 -0.28806 ... -0.29184 -0.29184 -0.29184 -0.4000

150.0 -0.73888 -0.21227 -0.29102 ... -0.29495 -0.29495 -0.29495 -0.4000

165.0 -0.74700 -0.21358 -0.29352 ... -0.29752 -0.29752 -0.29752 -0.4000

180.0 -0.75000 -0.21429 -0.29460 ... -0.29862 -0.29862 -0.29862 -0.4000

195.0 -0.74658 -0.21316 -0.29315 ... -0.29716 -0.29716 -0.29716 -0.4000

210.0 -0.73557 -0.20901 -0.28814 ... -0.29211 -0.29211 -0.29211 -0.4000

225.0 -0.71604 -0.20087 -0.27879 ... -0.28276 -0.28276 -0.28276 -0.4000

240.0 -0.68750 -0.18831 -0.26490 ... -0.26889 -0.26889 -0.26889 -0.4000

255.0 -0.65011 -0.17165 -0.24706 ... -0.25104 -0.25104 -0.25104 -0.4000
270.0 -0.60498 -0.15228 -0.22679 ... -0.23052 -0.23052 -0.23052 -0.4000

285.0 -0.55439 -0.13272 -0.20642 ... -0.20921 -0.20921 -0.20921 -0.4000

300.0 -0.50198 -0.11634 -0.18831 ... -0.18920 -0.18920 -0.18920 -0.4000

315.0 -0.45256 -0.10629 -0.17355 ... -0.17228 -0.17228 -0.17228 -0.4000

330.0 -0.41165 -0.10360 -0.16136 ... -0.15964 -0.15964 -0.15964 -0.4000

345.0 -0.38452 -0.10558 -0.15151 ... -0.15190 -0.15190 -0.15190 -0.4000

360.0 -0.37500 -0.10714 -0.14730 ... -0.14931 -0.14931 -0.14931 -0.4000

1
1 1
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Table 3. Values of semi-major axis for the general case, T = 0.1I

I 0 1 2 3 21 22 23 T

15.0 2.50711 2.88530 2.89199 ... 2.89171 2.89171 2.89171 0.1000

30.0 2.52813 2.91557 2.92349 ... 2.92326 2.92326 2.92326 0.1000

45.0 2.56211 2.96397 2.97368 ... 2.97351 2.97351 2.97351 0.1000

60.0 2.60747 3.02762 3.03939 ... 3.03924 3.03924 3.03924 0.1000

75.0 2.66201 3.10273 3.11655 ... 3.11641 3.11641 3.11641 0.1000

90.0 2.72295 3.18489 3.20054 ... 3.20039 3.20039 3.20039 0.1000

105.0 2.78692 3.26920 3.28636 ... 3.28619 3.28619 3.28619 0.1000

120.0 2.85000 3.35047 3.36879 ... 3.36860 3.36860 3.36860 0.1000

135.0 2.90781 3.42328 3.44243 ... 3.44223 3.44223 3.44223 0.1000

150.0 2.95552 3.48212 3.50181 ... 3.50160 3.50160 3.50160 0.1000

165.0 2.98801 3.52143 3.54141 ... 3.54120 3.54120 3.54120 0.1000

180.0 3.00000 3.53571 3.55579 ... 3.55558 3.55558 3.55558 0.1000

195.0 2.98633 3.51975 3.53975 ... 3.53954 3.53954 3.53954 0.1000

210.0 2.94229 3.46886 3.48864 ... 3.48843 3.48843 3.48843 0.1000

225.0 2.86418 3.37935 3.39883 ... 3.39862 3.39862 3.39862 0.1000

240.0 2.75000 3.24919 3.26834 ... 3.26813 3.26813 3.26813 0.1000

255.0 2.60044 3.07889 3.09774 ... 3.09753 3.09753 3.09753 0.1000

270.0 2.41991 2.87260 2.89123 ... 2.89102 2.89102 2.89102 0.1000

285.0 2.21757 2.63925 2.65767 ... 2.65749 2.65749 2.65749 0.1000

300.0 2.00791 2.39355 2.41155 ... 2.41145 2.41145 2.41145 0.1000

315.0 1.81024 2.15650 2.17332 ... 2.17337 2.17337 2.17337 0.1000

330.0 1.64660 1.95465 1.96909 ... 1.96925 1.96925 1.96925 0.1000

345.0 1.53806 1.81700 1.82848 ... 1.82852 1.82852 1.82852 0.1000

360.0 1.50000 1.76786 1.77790 ... 1.77779 1.77779 1.77779 0.1000

I
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Table 4. Values of semi-major axis for the general case, T = 0.6

1 0 1 2 3 21 22 23 T

15.0 0.41785 0.79604 0.83617 ... 0.82821 0.82821 0.82821 0.6000

30.0 0.42136 0.80879 0.85630 ... 0.84994 0.84994 0.84994 0.6000

45.0 0.42702 0.82888 0.88714 ... 0.88229 0.88229 0.88229 0.6000

60.0 0.43458 0.85472 0.92534 ... 0.92125 0.92125 0.92125 0.6000

75.0 0.44367 0.88438 0.96729 ... 0.96315 0.96315 0.96315 0.6000

90.0 0.45383 0.91576 1.00966 ... 1.00498 1.00498 1.00498 0.6000

105.0 0.46449 0.94677 1.04973 ... 1.04438 1.04438 1.04438 0.6000

120.0 0.47500 0.97547 1.08538 ... 1.07946 1.07946 1.07946 0.6000

135.0 0.48463 1.00011 1.11500 ... 1.10868 1.10868 1.10868 0.6000

150.0 0.49259 1.01919 1.13732 ... 1.13078 1.13078 1.13078 0.6000

165.0 0.49800 1.03142 1.15134 ... 1.14468 1.14468 1.14468 0.6000

180.0 0.50000 1.03571 1.15618 ... 1.14948 1.14948 1.14948 0.6000

195.0 0.49772 1.03114 1.15113 ... 1.14446 1.14446 1.14446 0.6000

210.0 0.49038 1.01695 1.13564 ... 1.12903 1.12903 1.12903 0.6000

225.0 0.47736 0.99253 1.10941 ... 1.10285 1.10285 1.10285 0.6000

240.0 0.45833 0.95752 1.07241 ... 1.06583 1.06583 1.06583 0.6000

255.0 0.43341 0.91186 1.02497 ... 1.01829 1.01829 1.01829 0.6000

270.0 0.40332 0.85602 0.96778 ... 0.96103 0.96103 0.96103 0.6000

285.0 0.36960 0.79127 0.90183 ... 0.89548 0.89548 0.89548 0.6000

300.0 0.33465 0.72029 0.82825 ... 0.82380 0.82380 0.82380 0.6000

315.0 0.30171 0.64797 0.74886 ... 0.74893 0.74893 0.74893 0.6000

330.0 0.27443 0.58248 0.66912 ... 0.67482 0.67482 0.67482 0.6000

345.0 0.25634 0.53528 0.60417 ... 0.60857 0.60857 0.60857 0.6000

360.0 0.25000 0.51786 0.57809 ... 0.57474 0.57474 0.57474 0.6000

I
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Table 5. Values of semi-major axis for the general case, T = 1.1I

50 1 2 3 21 22 23 T

15.0 0.22792 0.60611 0.67968 ... 0.65760 0.65760 0.65760 1.1000

30.0 0.22983 0.61726 0.70437 ... 0.68722 0.68722 0.68722 1.1000

45.0 0.23292 0.63478 0.74160 ... 0.72855 0.72855 0.72855 1.1000

3 60.0 0.23704 0.65719 0.78666 ... 0.77515 0.77515 0.77515 1.1000

75.0 0.24200 0.68272 0.83471 ... 0.82246 0.82246 0.82246 1.1000

90.0 0.24754 0.70948 0.88163 ... 0.86747 0.86748 0.86746 1.1001

105.0 0.25336 0.73564 0.92440 ... 0.90820 0.90812 0.90822 1.0994

120.0 0.25909 0.75956 0.96106 ... 0.94302 0.94325 0.94306 1.1010

135.0 0.26435 0.77983 0.99044 ... 0.97144 0.97134 0.97137 1.1000

150.0 0.26868 0.79529 1.01186 ... 0.99217 0.99205 0.99218 1.0992

165.0 0.27164 0.80506 1.02491 ... 1.00483 1.00480 1.00484 1.0997

180.0 0.27273 0.80844 1.02929 ... 1.00913 1.00909 1.00913 1.0997

195.0 0.27148 0.80491 1.02488 ... 1.00478 1.00475 1.00478 1.0998

210.0 0.26748 0.79405 1.01166 ... 0.99169 0.99175 0.99169 1.1004

225.0 0.26038 0.77555 0.98983 ... 0.97007 0.97000 0.97016 1.0986

240.0 0.25000 0.74919 0.95982 ... 0.94033 0.93992 0.94000 1.1007

255.0 0.23640 0.71486 0.92222 ... 0.90156 0.90239 0.90251 1.09453 270.0 0.21999 0.67269 0.87759 ... 0.85796 0.85796 0.85534 1.1485

285.0 0.20160 0.62327 0.82596 ... 0.80939 0.80155 0.80800 1.0538

1 360.0 0.13636 0.40422 0.51465 ... 0.50456 0.50454 0.50456 1.0997

3 Some transfer angle cases were omitted because T = 1.1 exceeded the minimum

energy transfer time, tine.

1
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Table 6. Comparison of Gauss Method with series solution, T = 0.1

Series Solution: (repeated for convenience)

1 0 1 2 3 21 22 23 T

15.0 2.50711 2.88530 2.89199 ... 2.89171 2.89171 2.89171 0.1000

30.0 2.52813 2.91557 2.92349 ... 2.92326 2.92326 2.92326 0.1000

45.0 2.56211 2.96397 2.97368 ... 2.97351 2.97351 2.97351 0.1000

60.0 2.60747 3.02762 3.03939 ... 3.03924 3.03924 3.03924 0.1000

75.0 2.66201 3.10273 3.11655 ... 3.11641 3.11641 3.11641 0.1000

Gauss Method:

1 0 1 2 3 21 22 23 T

15.0 2.67394 2.89500 2.89166 ... 2.89171 2.89171 2.89171 0.1000

30.0 2.16686 2.98185 2.92002 ... 2.92326 2.92326 2.92326 0.1000

45.0 1.57486 3.35599 2.92979 ... 2.97351 2.97351 2.97351 0.1000

60.0 1.04310 5.36176 3.03939 ... 3.03924 3.03924 3.03924 0.1000

I The Gauss method failed to converge for 0 > 75' .

2
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Particular Cases

3 In order to numerically integrate the equations of motion for an n-body orbit problem,

an initial estimate of a trajectory must be provided. Generally, the two body solution is

used to obtain this trajectory information when one gravitational source is predominant

over the others. The two body series solution presented in the analytical development

section was used to provide the initial trajectories for two multiple body problems. The

first case resulted in a hyperbolic transfer, and the second produced an elliptic transfer.

I The following values may be considered to be given data for the two-body problem.

The position coordinates are given in Astronomical Units, (AU) where one AU is the

mean distance from the Sun to the Earth. The time unit used is the day, (d) where one

day equals 24 hours. Angular values are presented in degrees. The gravitational constant

I k = Vi" The first case was as follows:

I xl = 0.46918988885509 AU

yl = -0.77383205171227 AU

zl = -0.01964834734771 AU

z2 = 1.31776281141600 AU

y2 = -0.41736193703330 AU

z2 = 0.02991885008669 AU

k = 0.01720209895000AU( 3/ 2 )/d

t = 40.000 d

Orl = 0.90517470889026 AU

r2 = 1.38260079242914 AU

I = -41.268240

T = -0.0059691678669

I
I
I 21

I



m
I

From the given data, the Bi coefficients of equation (23) may be calculated. A partial

sum is formed of the first i terms, then the result is multiplied by the quantity (s/2), where s

is the semi-perimeter. This product gives the semi-major axis. The following output shows

the value of semi-major axis obtained by using the first i terms in the series. The first

number is the index i, and the second number is the semi-major axis in (AU).

m 1 -49.2301806515044904

2 -48.7672453986109379

3 -48.7679313499686148

4 -48.7679320992466774

5 -48.7679321023198326

3 6 -48.7679321023313657

7 -48.7679321023314029

S8 -48.7679321023314030

9 -48.7679321023314030

I Once the semi-major axis has been found, the orbit is completely determined since

two positions on the orbit are known from the given data. Any of the remaining classical

orbital elements may be calculated as well as position and velocity vectors for any point

in the orbit. In the multibody problems it was desired to know the components of the

velocity vector at position r'{, so they are provided for reference. These components were

used as the initial value in a boundary value problem.

= 2.52566922684011E-0002AU/d

3 )= 5.02133832285282E- 0003 AU/d

= 1.20446318655231E-0003AU/d

I
m
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Following the same format as before, the second case was as follows:

X1 = 0.50186422427732 AU
Iyl = -0.77640603245208 AU

Z1 = -0.01549685878577 AU

x2 = 1.37003894998300 AU

y2= -0.21022615184980 AU3 z2 = 0.02453126302031 AU

k = 0.01720209895000 AU( 3/ 2 )/d

t = 54.000 d
rl = 0.92461569285281 AU3 r2 = 1.38629129055097 AU

0 = 48.435710

3 T = 0.1886166547276

I
I
I
I
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i, semi-major axis (AU):i
1 1.58419934014415077

2 2.05984061297696060

3 2.08346900567006944

4 2.08277664547186128

5 2.08286558797827610

6 2.08285434745162601

7 2.08285556050262464

8 2.08285544531016136

9 2.08285545548735275

10 2.08285545459028151

11 2.08285545467360664

12 2.08285545466545692

13 2.08285545466626006

14 2.08285545466618325

15 2.08285545466619034

16 2.08285545466618969

17 2.08285545466618975

18 2.08285545466618975

19 2.08285545466618975

20 2.08285545466618975

initial velocity components:

I = 2.14961598862402E- 0002 AU/d

= 5.95134600445128E- 0003 AU/d

z = 7.08698265474608E - 0004 AU/d

I
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IV. Conclusions and RecommendationsI
Summary and Conclusions

The two body series solution presented in the analytical development section appears

to be well behaved within the following limits: -1 < T < Tnee, 3 < i < 23. Note when

T = 0, the orbit is parabolic, and the semi-major axis is infinite. However, the parabolic

orbit is uniquely defined for a given problem goemetry.

IThe series solution also appears to be relatively insensitive to the transfer angle, 0.

Presumably this may be explained by noting Lambert's Time Function, from which the

I series was derived, is also relatively insensitive to the transfer angle.

The series may be used for any two body orbit flight time from hyperbolic transfers

up to the minimum energy elliptic transfer. The series should not be used for flight times

exceeding the minimum energy transfer time, because the form of Lambert's Time Function

used in the derivation does not apply to such orbits. For flight times greater than tine,

Lambert's Time Function iincludes a constant term related to the orbital period, which

is the time required . - .ake one complete orbital revolution. The presence of this term

makes it difficult tr xpress Lambert's Time Function as a power series.

Because the series may be used for both hyperbolic and elliptic orbits, it avoids the

necessi+y of programming for separate cases as is usually done in the direct application of

Lambert's Time Function.

The greatest advantage gained by using the series solution for semi-major axis over

other methods is that no initial value is required, because no root-finding technique is

necessary. Given the flight time and orbital geometry, it is possible to substitute the

appropriate values in to the series definition, then evaluate the series to obtain the semi-

major axis of the orbit.

I
I
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Recommendation for Further Study

The form of Lambert's Time Function for orbital transfers greater than the minimum

energy transfer time does not lend itself to series representation. If a series representa-

tion were to be found, then the inversion/reversion techniques presented in the analytical

development section may prove useful in solving such a series.

I It may be possible to use Asymptotic Matching (5: p. 270-279), to find the series that

describes greater that minimum energy orbits. By allowing the value of semi-major axis

to approach infinity in Lambert's Time Function, one may obtain a relationship between

flight time and semi-major axis for very long transfer times. This may be matched to

the solution for transfer times approaching the minimum energy time. If the resulting

expression could be expressed as a series, the reversion/inversion techniques again may be

Iuseful in solving the series.

I
I
I
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Appendix A. Example Coefficients

I The first six coefficients axe given:

B1  = A1

B 2 = A2/AI

B3 = (AIA 3 - A2)/A 3

B4 = (A2A 4 - 3AA 2A3 + 2A) /A5
I B5 = (A3A5 - 4A 2A 2A4 - 2A2A2 + 1OA 1 A2A 3 - 5A4)/A7

B6 = (A4A6 - 5A 3A2A5 + 15A2A 2A4 - 5A3A3A4 15A1A2A 2

-35AIA A 3 + 14A')/A9

B 7 = (ASA7 - 6A4A 2A 6 + 21A3A2A 5 - 6A4A 3As - 3A4A2 + 42A3A 2A 3A 4

-56A2A3A 4 + 7A3A
3 - 84A I AA 2 2 + 126AIA4A 3 - 42A6)/AllI

It is not recommended that these equations be programmed directly due to their

complexity. To avoid coding errors, it would be more efficient to program the recursive

relationships developed in the analytical development section. The recursive algorithm

allows the calculation of terms of much higher order than the first seven without explicit

coding. A sample FORTRAN listing is included in Appendix C that includes the necessary

algorithms.

I
I
I
,I
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Appendix B. Accuracy Plots for Various Transfer Angles

Plots of accuracy vs. T and number of terms are given for the following values

of transfer angle: 0 = 90' , 1800, 2700, 360'. The vertical axis represents the number of

significant figures of accuracy in the calculated value of semi-major axis. In general, the

number of significant figures increases with the number of terms in the series. The increase

is largest in the neighborhood of the Parabolic Transfer Time which corresponds to T = 0.

3 An example point is shown on figure 3, where the indicated point has coordinates

T = -3, i = 8, and significant figures = 7.

I
I
I
I
I
I
I
I
I
I
I

I



II
Io

Fiue3Icuaypo o 0dge rnfrage

I2



Ur
It
IV

g~10

Fiur 4.Acrc ltAok8 erernfrage

* 30



I9
I1

U4

3 31



.......I

I1 .....

33

I rf)



Appendix C. FORTRAN listing of Algorithm

This is the FORTRAN listing of the algorithm. The program requires two position3 vectors, a gravitational constant, and a flight time, and will produce the corresponding

value of semi-major axis.

I
I
U
I
I
I
I
I
I
I
I
I
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PROGMAU ELAH9
C
C THIS VERSION WILL HANDLE HYPERBOLIC AND ELLIPTIC ORBITS
C

DOUBLE PRECISION Q(78,78) , A(78) , B(78)
DOUBLE PRECISION X, XB, S
DOUBLE PRECISION TOF , TIME , PARATIME , SEMIMAJORAXIS
DOUBLE PRECISION Xi , Yi , Z1 , X2 , Y2 • Z2 , K
DOUBLE PRECISION R1 , R2 , DOT , ARG , BETA
DOUBLE PRECISION CHORD , SEMIPERIMETER
DOUBLE PRECISION K1 , K2 , K3
DOUBLE PRECISION ARGi , ARG2 , C1 , C2 , C3 , TC
DOUBLE PRECISION RVi , RV2 , RV3 , AL , BE , EA , F G
DOUBLE PRECISION V1 , V2 , V3 , II

INTEGER I J M N FLAG FLAG2
INTEGER ORDER , AA , BB , P
COMMON /ELAHCOM/ Q, A, B, X, XB, S, TOF, TIME, PARATIME,

+ SEMIMAJORAXIS, XI, Yi, Zi, X2, Y2, Z2, K,
+ R1, R2, DOT, ARG, BETA, CHORD, SEMIPERIMETER,
+ K1, K2, K3, ARGi, ARG2, C1, C2, C3, TC, RVi,+ RV2, RV3, AL, BE, EA, F, G, V1, V2, V3, II,
+ I, J, M, N, FLAG, FLAG2, ORDER, AA, BB, P
DOUBLE PRECISION PI
PARAMETER (PI - 3.141592653589D0)

C DEFINE THE FUNCTIONS FACT AND POCH

DOUBLE PRECISION FACT, POCH, TEMP

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CI C BEGINNING OF MAIN PROGRAM
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C GEOMETRY

x1 - 0.50186422427732DO
yl - -0.77640603245208D0
zi - -0.01549685878577DO

x2 - 1.37003894998300D0
y2 - -0.21022615184980D0
z2 - 0.02453126302031D0

C x1 - 0.46918988885509D0
C yl - -0.77383205171227D0
C zi - -0.01964834734771D0

C x2 - i.31776281141600D0
C y2 - -0.41736193703330D0
C z2 - 0.02991885008669D0

C SOLAR GRAVITATIONAL CONSTANT AU'3/2 DAY

K - 0.01720209895000DO

Figure 7. FORTRAN listing of algorithm

I
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RI - DSQRT( X1 * X1 + Y1 * Y1 + Z1 * ZI
R2 - DSQRT( X2 * X2 + Y2 * Y2 + Z2 * Z2
DOT - (XI *X2) + (Y1 * Y2) + (Z1 * Z2)

BETA - DACOS( DOT / (R1 * R2)
IF (BETA .LT. PI) THEN

FLAG - -1
ELSE

FLAG - 1
ENDIFICHORD - DSQRT(R1 * R1 + R2 * R2 - 2.000 * R1 R2 *DCOS(BETA))

SEZ4IPERIMETER - (R1 + R2 + CHORD) / 2.000

PARATIME - (DSQRTC2.000) / K) * (SEMIPERIMETER**i.5D0DLFAG (SHERETR-CO)*.DO) + .D

K1 - DSQRT(SEMIPERIMETER**3.ODO / 2.000) / K
K2 - DBLE(FLAG) * DSQRT((SENIPERIMETER-CHORD)**3.ODO 2-ODO) /K1 K3 - (SEMIPERIMETER - CHORD) / SEMIPERIMETER

C INITIALIZE MATRIX

ORDER - 23

DO 20 I - 1.ORDER
DO 10 J - 1,ORDER

Q(I,J) - 0.000I10 CONTINUE
A(I) - 0.ODO
B(I) - 0.ODO

20 CONTINUE

IC CALCULATE COEFFICIENTS AI OF ORIGINAL SERIES

DO 30 I - 1,ORDER
TEMP - DBLE(I

:M - AMTM.X - + DBZrA) **TM+ .D)/

Q+ ,1 -1OD 1.+ /BEFLG K3*.(1)/ AT(E

50 CONTINUE

I ~ ~~~DO 0N1 - (I) + A,) RQ(,N

60 CONTINU M

Figure 8. FORTRAN listing of algorithm (continued)
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I
3 Q(I,1) - Q(1,1) / (-A(1))

70 COUTINUE

C USE A AND 0 TO GET FINAL COEFFICIENTS

8 (1) - A(1)

00 90 I - 2,ORDER
DO 80 N - 2,1

B(I) - B(I) + A(M) * Q(CI-1), (M-i))
80 CONTINUE
90 CONTINUE

C USE COEFFICIENTS WITH DIFFERENT TIMES

U C INITIALIZE

X - 0.ODO
XB - 0.ODO
S - 0.0D0

TOF - 54.ODO
TIME - TOF / PARATIME - 1.00

DO 300 I - 1,ORDER

XB - B (I) * TIME" (1-2)
X - X + X(B
S - X I, SEHIPERIMETER / 2.00
PRINT 1, , S

300 CONTINUE

STOP
END

DOUBLE PRECISION FUNCTION FACT(U)

C CALCULATES FACTORIALS

3 DOUBLE PRECISION U, PROD, TEMP

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C BEGINNING OF FUNCTION FACT
C ~~~~~~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCC

IF (U .EQ. 0.00) THEN
FACT - 1.00

IIA-PROD - U
TW - U

S10 CONTINUE

IF (TZ .GT. 1.ODO) THEN
T]M - TM - 1.003 PROD - PROD * TMU

Figure 9. FORTRAN listing of algorithm (continued)
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GOTO 103 iDIT
fACI - PROD

END IT

END

DOUBLE PRECISION FUNCTION POCH(U,V)

C CALCULATES POCHRAIOEER SYMBOLS

I DOUBLE PRECISION 0,V,PROD,TEMP

CCCCCCCCCcccCCCCCCcCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccc
C
C BEGINNING OF FUNCTION POCH

PROD - 1.ODOI TEMP - V

10 CONTINUE

3 IF (TEMP .0Z. 1.000) THEN
TEMP - TEMP -1.000

PROD - PROD *(U + TEN)
GOTO 103 ENDIF

POCH - PROD

3 END

Fiue1.FRRNlsigoIloih cniud
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